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Site-bond correlated percolation in a ferromagnetic and 
antiferromagnetic lattice gas: the Bethe cluster 
approximation 

F di Libertot, G Monroy? and C Palmierit 
Istituto di Fisica Teorica, Mostra d’oltremare, pad 19, 80125, Napoli, Italy 

Received 7 June 1982 

Abstract. We study the site-bond correlated percolation problem in a lattice gas within 
the Bethe cluster approximation and obtain explicit results both in the ferromagnetic and 
antiferromagnetic regions. 

1. Introduction 

The site-bond correlated percolation (SBCP) problem, which recently has been studied 
by many authors, is a generalisation of the correlated percolation problem, i.e. the 
clusters in a lattice gas or Ising model are defined as the maximal sets of nearest- 
neighbour particles connected by active bonds. The probability of a bond being active 
is pB and non-active 1 -pB. For ferromagnetic interactions this formulation has been 
proven suitable to describe the effect of a bad solvent in gelation (Coniglio et al 1979, 
Coniglio et a1 1982b), and also to describe the droplets in a lattice gas or Ising model 
(Coniglio and Klein 1980). A Monte Carlo study of the SBCP in two and three 
dimensions has also been done (Stauff er 198 1, Heermann and Stauff er 198 1, Roussenq 
1981). On the other hand, very little attention has been devoted to the antiferromag- 
netic case. 

Some authors have studied the site correlated percolation problem with antiferro- 
magnetic interaction (Muller-Krumbhaar 1974, Stoll and Domb 1979, Murata 1979, 
Napiorkowski and Hemmer 1980). More recently, the antiferromagnetic lattice gas 
has also been investigated in the context of the SBCP (Coniglio et a1 1981) in d = 2 
with the Migdal-Kadanoff renormalisation group. 

In this paper we consider the SBCP problem for both ferromagnetic and antiferro- 
magnetic interactions in the Bethe cluster approximation. We extend the study of 
the ferromagnetic case (Coniglio et a1 1979, 1982b) to include the coexistence region; 
in this region we investigate the behaviour of the ‘droplets’ (i.e. of the clusters with 
p e  = 1 - ); we find that these droplets do not diverge along the spinodal line 
(where the susceptibility diverges). Therefore at least in the Bethe approximation 
these droplets do not seem suitable to describe the spinodal line. 

In the antiferromagnetic region we find that the critical percolation lines for all 
p~ end at the top of the phase boundary at T = 0. For some pB they intersect the 
phase boundary in a point which therefore is critical both for percolation and for the 
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staggered susceptibility. This behaviour is not found at d = 2 (Coniglio et a1 1981), 
and therefore could be typical of systems of higher dimensionality. This antiferromag- 
netic model could be of relevance in the study of the sol-gel transitions in a good 
solvent. 

In $ 2  we give a review of the site-bond correlated percolation problem as the 
Q = 1 limit of a lattice gas Potts model. In 9: 3 we apply the Bethe cluster approximation 
to both the ferromagnetic and antiferromagnetic case and draw the conclusions. 

2. Site-bond correlated percolation. The Q-state lattice gas Potts model 

It is well known (Kasteleyn and Fortuin 1969) that the random bond percolation 
problem can be obtained from the Q-state Potts model in the Q = 1 limit. Analogously, 
it is well established (Wu 1978, Murata 1979, Coniglio and Klein 1980, Coniglio et 
a1 1981) that the lattice gas Potts model in the Q = 1 limit gives rise to the site-bond 
correlated percolation. In the site-bond correlated percolation problem the sites are 
correlated as in a lattice gas, but the bonds between neighbouring sites are active with 
probability p B  and non-active with probability 1 -pB.  

Denote 
-PXLG = K 1 n,n, + A  a,, (1) 

( 1 1 )  I 

the lattice gas Hamiltonian on a regular lattice of N sites where n = 1 if site i is 
occupied, 0 otherwise, p = l /KBT, K is the nearest-neighbour coupling constant 
related to the Ising coupling constant K I  by K I = K / 4 ,  A is the chemical potential 
related to the Ising magnetic field H and the coordination number z = U  + 1 by 
-H = )(A + 5zK). Positive and negative values of K correspond respectively to ferro- 
magnetic and antiferromagnetic coupling. The sum &,) is over nearest neighbours. 

In the site-bond correlated percolation the averages of the quantities of interest 
are calculated as follows: 

where E{n,} is the set of all bonds in the sublattice made of the occupied sites in the 
configuration {n,} ,  C is a subset of E{n , }  and D = E { n , }  - C. IC1 and ID I are the number 
of bonds respectively in the subsets C and D. Moreover, for every configuration { n l }  
we have Z : C 5 E { , , , l p B  (1 - p , ” ’ )  = 1. 

The same probability distribution as in (2) can be obtained, as said before, from 
the Hamiltonian 

IC1 

-px = - P ~ L c  - P ~ D P  (3) 

- p Z D P  = J  C (8vzm, - l ) w ,  + h C (4)  

and U, is the Q-state Potts variable. This procedure is described in detail e.g. in 
Coniglio et a1 (1981), and is based essentially on the fact that the partition function 
for (3) is written as 

in the Q = 1 limit, where -PXDp is the diluted Potts Hamiltonian 

- l ) n ,  
0 1 )  l 
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with 
(6) 

where q = e-', p = 1-4, r labels the clusters in the configuration C, sr  is the number 
of sites in the rth cluster and the product is over all the clusters in C. 

By means of ( 5 )  and ( 6 )  one can see that in the Q = 1 limit, the same probability 
distribution as in (2) is obtained, provided that pB = 1 - e-J = p .  In S 3 we shall make 
use of the ghost field h description (Kasteleyn and Fortuin 1969, Reynolds et a1 1977) 
to derive the expressions for the percolative functions of interest, that is: 

the density of particles 

IC1 ID' Z P o t t s h l  = 1 p q n [(Q - 1) exp(-hs,)+ 11 
C s E { n , l  r 

the percolation probability 

P = lim p h  
h-0  

where 
Pi, = 1 - 1 '  s ( f l , ) / p ,  (9) 

the sum C' is over all finite clusters and the quantity C' s(n, ) /p  in the h = 0 limit is 
the probability that a site belongs to a finite cluster; 

the mean cluster size 

s = lim 1' s * ( n , ) / C  s(n,) 
h-0  

which can be written by means of (9) 

In the above Hamiltonian formalism, quantities 17) and (9) can be calculated as follows 
(Murata 1979): 

l a  
p = lim - -1nZ  

~ + m  N ah 
0-1 
h -0 

By means of (12) and (13) the percolation probability can be easily calculated: 

P = lim (1 - p r / p  1. (14) 1,-0 

3. Percolation threshold in the Bethe cluster approximation 

For the Ising model on a Bethe lattice it is known that at H = 0 the percolation critical 
point does not coincide with the Bethe critical point l / K c  = -2/ln[l-  2/((+ + l)] 
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(Coniglio 1975, Essam 1980). In particular, because of the large connectivity of the 
Bethe lattice, the infinite cluster appears below the critical point as happens in 
dimensions d 3 3 (Muller-Krumbhaar 1974). In the terminology introduced in $ 2, 
the cluster made of nearest-neighbour particles, which is generally called the 'Ising 
cluster', is obtained in the Q = 1 limit if one sets pB = 1. As has been pointed out in 
Coniglio and Klein (1980) and is explicitly given in Coniglio et a1 (1981), the Hamil- 
tonian (3)  for h = 0 is equivalent to the following symmetric (Q + 1)-state Potts model, 

- p W b , ) = J  1 (SQ - 1 ) - 2 ( J - f K ) x  S ~ , O S ~ , O + [ ~ H + Z ( J - ~ K ) + I ~  QIC S ~ , O  (15) 

where -H = ;(A +qzK) and b, is a (0 + 1)-valued variable related to the (c+, n )  variables 
by the transformation 

(11) ,I I 

1 . . . Q  if n, = 1 and c+, = 1 . .  . Q 
b l = { O  if n, = 0. 

Hamiltonian (15) in the Q = 1 limit for J = K/2 is a symmetric two-state Potts model 
with coupling constant K/2,  i.e. a lattice gas model with coupling constant K. 

If we call (Coniglio and Klein 1980) 'Ising droplets' the clusters made of nearest- 
neighbour particles connected by active bonds with probability pB = 1 - e-K'2, by the 
above argument we expect that the Ising critical point K = K,, H = 0 is also a 
percolation point and that the clusters diverge at this point with Ising exponents. This 
argument is given in Coniglio and Klein (1980) and is tested therein with the Migdal- 
Kadanoff renormalisation group (MKRG) on a triangular lattice. On the square lattice 
it has also been tested by means of the MKRG, for ferromagnetic interactions (Coniglio 
er al 1981), while it is evident that for antiferromagnetic interactions (K < 0 )  the 
asymmetric term in Hamiltonian (15) can never vanish. 

In this section we study the Hamiltonian (3) in the Bethe cluster approximation 
(Domb 1960), both in the ferromagnetic and antiferromagnetic case, following the 
formalism of Murata (1979) but always keeping J finite. 

For this purpose let us consider an elementary cluster of a central site and its (+ + 1 
nearest neighbours (figure 1); let A and h be respectively the chemical potential and 
the ghost field acting on the central sitc. The influence of the rest of the lattice is 
taken into account by means of 'auxiliary fields' A' and h' acting on the near neighbours. 
The partition function on this elementary cluster is 

Z c = Q [ Q + e A  +(Q- l~eA' -h]" ' '+eAIQ+eK'A'+(Q- l ) eK'A-h  1 

where q = e-'. 

Figure 1. Reduced lattice for 
h '  are the 'auxiliary' fields. 

= 2. A is the chemical potential, h the ghost field. A' and 



Site-bond correlated percolation in a lattice gas 409 

The fields Af and h '  are determined by requiriilg the translational invariance 
conditions 

d 1 d  
p = lim - lnZ ,=  lim - - lnZ,  

0 - 1  z dA' 
h -0 

Q-.1 dA 
h -0  

and 

1 1  d 
lnZ ,=  lim - ~ Y l n Z ,  

1 d  
pf = lim ~ - 

0 - 1  (1 - Q) dh Q + ~ z  (1-Q) dh 

which gives respectively the following equations for Af and h' :  

e' = e''( 1 + e'')"/(l + eA'-K 1" (17) 

and 

(18) K + A ' - h '  m 
= (1 + e"')"/[l + q  eK+"+ (1 -9) e I .  e A -  h -A'- h' 

The density 

p = e'(1 +e"+K)rr+l/[(e."+ I ) ~ + '  +e'(l +eA'+K)u+l]  

p = e"(1 +e"'+K)/[(l  +e")+e''(l +e"-K)] 

e 

(19) 

can be written by means of (17) 

(20) 

which gives for the auxiliary field A' 

(21) - A '  
= ((1 - 2p) +[(I  - 2p)' + 4eKp(i  - p  ) ] " ' ) / 2 p .  

In order to write an expression for the percolation probability (8) let us evaluate 

Ph = 1 - P f / P .  (22) 

In fact, we can easily evaluate p f / p  

For non-zero ghost field h, equation (23) can be written as 

P J P  = (1 -PdQ"+'  
where 

p h  = l - e -h ,  (25) 

IPh = 1 -(1 - p h ) Q U + l .  

and equation (22) as 

(26) 
Relation (26) has been derived (Coniglio et al 1982b) in a more general context. This 
equation can be understood as introducing a 'ghost site' (Kasteleyn and Fortuin 1969) 
(figure 2). We add to the original lattice a ghost site such that every site in the original 
lattice is connected to it with probability p h .  This implies that for h # 0 we can have 
an infinite cluster made of all the sites that are connected through the ghost site. 
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Figure 2. The open circle is the ghost site; the dotted lines are ghost bonds 

Therefore, in equation (261, (l--ph)Q"+' can be regarded as the probability that a 
site is disconnected from the ghost site and that there is no infinite cluster in any of 
the (U + 1) directions that move away from that site. Of course ph = 1 -e-h is the 
probability that a site is connected with the ghost site (Sykes and Gaunt 1976, Reynolds 
er a1 1977). From equation (24) one can find a recurrence equation for Q. 

Define 

1-6 = (1 + q  eK+") / ( l  +eK+A') ,  

that is 

6 = ( l - q ) e ~ ' + K / ( l + e ~ L K ) = p n e ~ ' + K / ( l + e ~ ' + K ) ;  

therefore 
Q = 1-6 +: e - h ' ,  

Using equations (17) and ( lS ) ,  one can show that 
-h' e = e-"Q' = ( I  -Ph)Q', 

(27) 

and therefore we have the following recursion relation for Q: 

= (1 -6) + (1 -Ph);Q" (28) 

which in the h = 0 limit is the same equation as that studied by Fisher and Essam 
(1961) for the random site percolation. 

To find the percolation threshold let us calculate the mean cluster size 

s = [ ( l - p h ) - '  dPh/dh]h=o; 

by means of (26) and (28) we obtain 

s = (1 +;Q"-')/(l -C$Qu-l). (29) 

6cr1, = l /u.  (30) 

The percolative threshold is therefore given (Fisher and Essam 1961) by 

This equation, by means of the definition of p^, equation (27), gives the critical value 
of the auxiliary field A', which replaced in (20) allows us to write the critical value of 
the density for the percolation 

(31) 
This equation can also be given in the H and K variables by means of equations (17) 

P ~ ~ , ~ = P B ~ / [ ( P B U  - 1)' eK + 2pBU - 11. 
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and (19), that is 

= {pBa e"'*/[(pBa - 1) eK + 1 1 ) ~  eKI2(pBa - I) .  (32) 

Equation (31) has been obtained by Coniglio et a1 (1979) for Cayley tree types of 
lattices and for pB = 1 gives the same result as Murata (1979) and Kikuchi (1970). 

Let us study equation (32) separately in the ferromagnetic and antiferromagnetic 
cases. 

3.1. Ferromagnetic case 

The critical percolation line (32) has been studied in the K > 0 region and compared 
for T < T,  with the spinodal line where the susceptibility diverges given by 

(a  + 1) e-" - (a  - I )  '2) e2H = ( ( a  +- 1) e-" + (a  - 1) * gin( 
133) 2a e -  K/2 ze-K/2  

where 
2 g = (1 - e-")[(a - I )*  - (a + 112 e-"] 

Equation (32) shows that the critical Ising point H = 0, K = K ,  is also a percolation 
point, with pB given by 

L 3 -  - I p e  K c ' * =  2 / ( a + 1 )  

as we expected from the argument given at the beginning of this section. In figure 3 
we have plotted in the (H,  T )  plane the spinodal line together with the critical line 
of percolation points for pB = 1 -e-K'2 and pB = 1 for a = 11. In figure 4 the same 

h 

l i K  

Figure 3. The percolation l ine for v = 11 pB = 1 -e  
line) i n  the IH, T )  plane. The full line is the spinodal 

' (broken Iinc) and pB = 1 (dotted 
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r i  T ,  

Figure 4. The spinodal and the percolation lines for p s  = 1 and pB = 1 
in the (p,  T / T J  plane. 

for U = 3 

curves are shown for CT = 3 in the ( p ,  T/T,) plane. The results shown in the above 
figures are in agreement with Coniglio et a1 (1979, 1982b) who restricted their analysis 
to the region outside the coexistence curve. Here we have investigated the behaviour 
of the droplets with pB = 1 - eCK” also in the coexistence region: as one can see, these 
droplets do not diverge along the spinodal line. Therefore, at least in the Bethe 
approximation, a new definition of clusters seems necessary for H # 0 to describe the 
droplets appropriately. Analogous indications come from considering the critical 
behaviour. The critical exponent y for the zero magnetic field susceptibility does not 
coincide with the value of the critical exponent yb for the mean cluster size (Coniglio 
et al 1982b), while it is known that above T, they coincide. 

3.2. Antiferromagnetic case 

In the antiferromagnetic region one must consider two sublattices (figure 5 )  of sites 
A and B. On these two sublattices we define the partition functions 

t 

Figure 5. Two reduced lattices for U = 3 centred respectively on site A and B. AA, ha 
are the auxiliary fields acting on the neighbours of A ,  while AB, h s  act on the neighbours 
of B. 
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The transitional invariance requirements are now 

PA =Pb P i  =PB 

where e.g. 

a 
0+1 ah PA = lim - In Z A  

h - 0  

413 

(34) 

In order to find the critical line of percolation points, one can define the probability 
of an infinite cluster with origin in A and the probability of an infinite cluster with 
origin in B respectively as 

P A  = lim P h ( A )  = lim (1 - P ~ A / P A )  PB = lim P h ( B )  = lim (1 -pfB/pB). 
h+O h - 0  h-0  h+O 

If one defines the quantities 

= pB eAA+"/(l + eAA+") 

and 

~1~ = p B  eABtK/(1 + eAe+K) 

we have the following recursion relation for (36): 

QA = (1 - ;A)  f (1 -ph);AQ; (37) 

6 A B B  = 1/a2. (38) 

QB = (1 -6,) + (1 -P~)P*BQ>. 

By means of (37) the percolation thresholds for PA and PB are given by 

Equations (34) and (38) can be solved numerically. The results are plotted in figures 
6 and 7. In figure 6 we have plotted in the (/Hl/lKl, l/lKl) plane the antiferromagnetic 
phase boundary given by (Kasteleyn 1956, di Liberto et a1 1982) 

(a - 1) e-" + (a + 1) * m (a - 1) e-" - (a + 1) * m e2H 

where 
2 m = (1 -e-")[(a + I ) ~ -  (a - I)* e-"] 
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u = 5  

5 
X 

p B =  0.36 

5 
X 

1 

0.5 

0 0 5  1 
1 l IK I  

Figure 6. The antiferromagnetic phase boundary and the percolation lines for PB = 0.25,  
pB = 0.33 and pB = 0.36 for CT = 5 in the ( IH! ,  T )  plane. 

\ I 

Figure 7. An overall picture of percolation line for p e  = 0.5 in the ferromagnetic and 
antiferromagnetic region together with the spinodal and the antiferromagnetic phase 
boundary in the (H ,  K )  plane for U = 3 .  

and the critical line of percolation points for ( + = 5  and p B = 0 . 2 5 ,  p ~ = O . 3 3  and 

It is significant to remark that at T = 0 and H / K  s ((T + 1)/4 the ground state is 
ordered antiferromagnetically, and therefore we expect no percolation there and as 
a matter of fact all the percolation lines end at the top of the phase boundary. Smaller 
values of pB determine a larger percolative region. Moreover, we find that for most 
pB the percolation line intersects the antiferromagnetic phase boundary. Therefore 

P B  = 0.36. 
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at this point we have both percolation and divergence of the staggered susceptibility: 
an interesting question would be to investigate the behaviour of the critical indices 
at this intersection point. The same behaviour could probably be found in three- 
dimensional systems. 

The case studied here (Bethe lattice) gives the same qualitative picture as for the 
two-dimensional case (Coniglio et a1 1981) only at T = 0. An overall picture of the 
percolation line in the ferromagnetic and antiferromagnetic regions is shown in figure 
7 for pB = 0.5, = 3 together with the spinodal and the antiferromagnetic phase 
boundary in the (H,  K )  plane. 

the clusters diverge at the Ising critical 
point; an analogous behaviour does not occur in the antiferromagnetic case, i.e. the 
droplets with pB = 1 - do not diverge along the antiferromagnetic phase boundary 
as expected. A new definition of clusters of holes and particles has been recently 
introduced (Coniglio er a1 1982a) which is a better candidate to describe the antiferro- 
magnetic droplets. The study of this model is under investigation. 

In the ferromagnetic case for pB = 1 - 
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